http://poj.org/problem?id=3233
2.Idea
Binomial Power, DP
3.Source
typedef vector<int> vec;
typedef vector<vec> mat;
int n, k, M;
mat A;
mat mul(mat &A, mat &B) {
mat C(A.size(), vec(B[0].size()));
for (int i = 0; i < A.size(); i++)
for (int k = 0; k < B.size(); k++)
for (int j = 0; j < B[0].size(); j++) {
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % M;
}
return C;
}
mat pow(mat A, ll n)
{
mat B(A.size(), vec(A[0].size()));
for (int i = 0; i < A.size(); i++) {
B[i][i] = 1;
}
while (n) {
if (n & 1) B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B;
}
void solve()
{
mat B(n * 2, vec(n * 2));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
B[i][j] = A[i][j];
}
B[n + i][i] = B[n + i][n + i] = 1;
}
B = pow(B, k + 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int a = B[n + i][j] % M;
if (i == j) a = (a + M - 1) % M;
printf("%d%c", a, j + 1 == n ? '\n' : ' ');
}
}
}
int main()
{
cin >> n >> k >> M;
mat AA(n, vec(n));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int t;
scanf("%d", &t);
AA[i][j] = t;
}
}
A = AA;
solve();
return 0;
}
No comments:
Post a Comment